THE CONVERSION OF FRIEDELIN INTO METHYL TETRANORSHIONANOATE

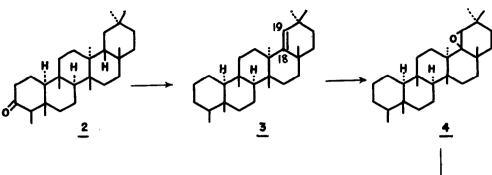
Takeyoshi Takahashi, Takahiko Tsuyuki, Tokiko Hoshino and Masatoki Ito Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

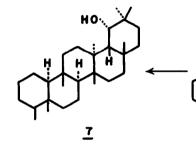
(Received 19 April 1967)

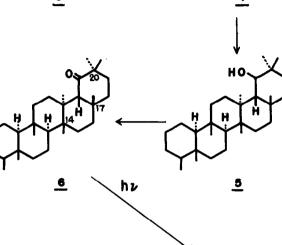
SHIONONE is one of the constituents of <u>Aster tataricus</u> L. The structure <u>1</u> has been proposed¹⁾ for shionone on the basis of chemical degradations, as well as by means of biogenetic considerations. In the preceding communication²⁾, the nature of rings C and D has been clarified, and evidence leading to the structure <u>1</u> for shionone has been presented.

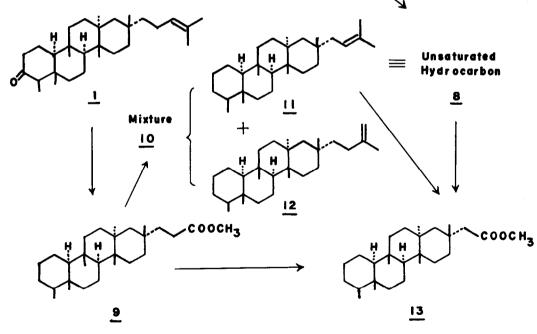
We now describe the conversion of friedelin (2) into methyl tetranorshionanoate (13).

Friedelin (2) was transformed into the known 18(19)-friedelene (2)³⁾, which could be oxidized to the epoxy derivative (4^{1b} ,³⁾. Reduction of 18β , 19β -epoxyfriedelane (4^{1b}) with Li-EtNH₂-t-BuOH gave 19β -hydroxyfriedelane (5^{15}), $C_{30}H_{52}C_{0H}^{06}$, m.p. 208.5 - 209.5°, ν_{OH} 3450 cm⁻¹, NMR: δ = 3.70 (1H, doublet, J = 6 Hz, C-Q-CH-C, in CDCl₃), $[\alpha]_{578}$ + 11° (\underline{c} = 1.9, in CHCl₃). Dehydration with phosphorus pentachloride afforded 18(19)-friedelene ($\underline{2}$) in good yield⁷⁾, confirming that no skeletal rearrangement had occurred in the reduction of $\underline{4}$ to give $\underline{5}$. The location of the hydroxyl group at C_{19} (not at C_{18}) of $\underline{5}$ is deduced from the NMR data. The oxidation of $\underline{5}$ with Jones' reagent yielded 19-oxofriedelane ($\underline{6}$)⁸⁾, $C_{30}H_{50}$ °, M⁺ 426, m.p. 235°, $\nu_{C=0}$ 1685 cm⁻¹ 9), NMR: δ = 2.20 (1H, singlet, in CDCl₃), ORD and CD: positive Cotton curves. This ketone ($\underline{6}$), when treated with lithium aluminum hydride, furnished 19α -hydroxyfriedelane ($\underline{7}$)¹⁰, $C_{30}H_{52}$ °, m.p. 233-234°, ν_{OH} 3750 cm⁻¹, NMR: δ = 3.78 (1H, doublet, J = 8 Hz, in CDCl₃), [α]₅₇₈

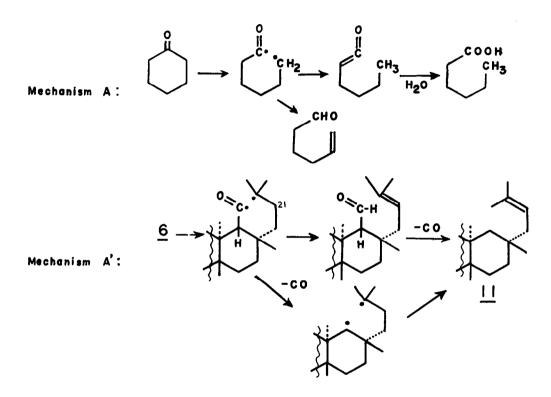

2997


+ 17° (<u>c</u> = 1.0, in CHCl₃). Ketone <u>6</u>, however, was recovered unchanged from the following reactions: Baeyer-Villiger and Schmidt reactions, oximation, enol-ace-tylation, enol-benzoylation and alkaline oxidation with potassium permanganate.


19-0xofriedelare ($\underline{6}$), in AcOH-H₂O (9 : 1), was heated under reflux and was irradiated under a nitrogen atmosphere using a 100 W mercury lamp. The mixture, after separation by column chromatography (SiO₂ and then SiO₂-AgNO₃), gave an unsaturated hydrocarbon ($\underline{8}$)¹¹⁾, m.p. 115 - 117°, M⁺ 398, NMR: δ = 5.18 (1H, broad singlet, in CDCl₃), and an unidentified carboxylic acid. The hydrocarbon ($\underline{8}$) was identical (IR, NMR, GLC, TLC and mass spectrometry) with norshionene ($\underline{11}$), C₂₉H₅₀, M⁺ 398, m.p. 120 - 121°, IR: 835 cm⁻¹, NMR: δ = 5.18 (1H, broad singlet, in CDCl₃), synthesized from shionone ($\underline{1}$) via methyl trinorshionanoate ($\underline{9}$)¹⁾. The presence of iso-norshionene ($\underline{12}$) (IR: 885 cm⁻¹) together with norshionene ($\underline{11}$) was noted in the hydrocarbon mixture ($\underline{10}$) obtained by Grignard reaction on 9, followed by dehydration. The separation of $\underline{11}$ from the mixture ($\underline{10}$) was carried out by chromatography on SiO₂-AgNO₃.


Furthermore, the unsaturated hydrocarbon ($\underline{8}$) was oxidized (CrO_3 -AcOH- H_2O) to give after methylation methyl tetranorshionanoate ($\underline{13}$), $\text{C}_{27}\text{H}_{46}\text{O}_2$, M⁺ 402, m.p. 123.5 - 124°, [α]₅₇₈ + 3° (\underline{c} = 1.4, in CHCl₃), identical (m.p. and mixed m.p., [α]₅₇₈, IR, NMR, GIC, TLC and mass spectrometry) with the authentic sample obtained from methyl trinorshionanoate ($\underline{9}$) by the Barbier-Wieland procedure¹. The same ester ($\underline{13}$) was also formed on methylation of an acidic fraction obtained by oxidation of hydrocarbon mixture ($\underline{10}$).

Photochemical cleavage of cycloalkanones yields a ketene or an unsaturated aldehyde, following mechanism " A " ¹²). In the presence of water, this ketene gives a saturated carboxylic acid¹²). Irradiation of steroids with an angular aldehyde group results in decarbonylation, to yield the corresponding norsteroids¹³). The formation of norshionene (<u>11</u>) from <u>6</u> could be interpreted by the mechanism " A' ". An acyl radical formed by irradiation of <u>6</u> abstracts a hydrogen at C_{21} to yield an unsaturated aldehyde. Subsequent decarbonylation would lead to <u>11</u>. An alternative explanation which involves the direct decarbonylation accompanied by migration of a hydrogen to form <u>11</u> would also be applicable.



The transformation of friedelin $(\underline{2})$ into methyl tetranorshionanoate $(\underline{13})$ was thus achieved. Together with evidence described in the preceding communication, the above correlation now established between friedelin and shionone leads unambiguously to the structure and stereochemistry of shionone $(\underline{1})$. The structure $\underline{1}$ of shionone is entirely in agreement with the modern biogenetical theory¹⁴) of higher terpenoids, which was in fact used to derive it initially¹.

 a. F. Patil, G. Ourisson, Y. Tanahashi and T. Takahashi, <u>Bull. Soc. Chim.</u> <u>France</u>, 1422 (1964).
 b. Y. Tanahashi, Y. Moriyama, T. Takahashi, F. Patil, J.-F. Biellmann and G. Ourisson, <u>ibid</u>., 1670 (1966). And the references cited therein.

2) T. Takahashi, Y. Moriyama, Y. Tanahashi and G. Ourisson, <u>Tetrahedron Letters</u>, preceding communication.

- V. V. Kane and R. Stevenson, <u>Chem. & Ind.</u>, 1243 (1960); <u>Tetrahedron</u>, <u>15</u>,
 223 (1961). F. Kohen and R. Stevenson, <u>J. Org. Chem.</u>, <u>30</u>, 2479 (1965).
- 4) The stereochemistry of the epoxy ring should be β . The α configuration may be excluded because of the bowsprit-flagpole interactions due to 14 β , 17 β and 20 β methyl groups.
- 5) The configuration at C_{18} of 5 would be the same (18 β -H) as in 6.
- 6) Satisfactory microanalyses were obtained for all new compounds.
- 7) The corresponding dehydration of the 190-OH isomer (7) gave 18(19)-friedelene (3) (in ca. 3% yield), together with other unidentified compounds formed probably by skeletal transformations.
- 8) The ketone <u>6</u> is stable to an alkaline treatment; this favors a 18β-H configuration (ring junctures C/D/E: trans-anti-cis) for <u>6</u>. The 18α-H isomer (trans-syn-trans) is considered to be much less stable than the 18β-H isomer. Cf. E. L. Eliel, <u>Stereochemistry of Carbon Compounds</u>, p. 282, McGraw-Hill, New York (1962).
- 9) The low wave number observed could be interpreted by steric environments which cause a deformation of the carbonyl group to diminish the C=O double bond character.
- 10) The formation of 7 may be well illustrated by attack of the reagent from the less hindered β side to give the 19 α -OH isomer; this furnishes a further evidence which supports the 18 β -H configuration for <u>6</u>.
- No iso-norshionene (<u>12</u>) was found (GLC and TLC). Other unidentified hydrocarbons were also isolated.
- 12) O. L. Chapman, in W. A. Noyes Jr., G. S. Hammond and J. N. Pitts Jr., ed., <u>Advances in Photochemistry</u>, Vol 1, pp. 366-370, Interscience, New York (1963). P. Bladon, W. McMeekin and I. A. Williams, <u>Proc. Chem. Soc.</u>, 225 (1962). E. L. Ghisalberti and P. R. Jefferies, <u>Tetrahedron Letters</u>, 6323 (1966).
- J. Iriarte, J. Hill, K. Schaffner and O. Jeger, Proc. Chem. Soc., 114 (1963).
 M. Akhtar, <u>Tetrahedron Letters</u>, 4727 (1965).
- 14) A. Eschenmoser, L. Ruzicka, O. Jeger and D. Arigoni, <u>Helv. Chim. Acta</u>, <u>38</u>, 1890 (1955).